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Space Radiation Effects on Microelectronics

 Presented by the Radiation Effects Group
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 Sammy Kayali, Section Manager
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Radiation Effects in Space

 Radiation Is a Discriminating Environment for JPL Missions

 Dealing with Potential Radiation Problems Is Critical for Mission
Success

– Complex problem, made worse by evolving technology
– Past mission performance illustrates how JPL can be successful in space
– Learning from previous mistakes and oversights is also important

 This Course Is Intended to Increase Awareness of Radiation Issues
– Attended by designers and spacecraft operational personnel

– Limited in scope
• Not intended to make everyone an expert

• Provides basic information and points of contact
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Examples of Radiation Problems in Spacecraft

 Special Redesign of 2901 Microprocessor for Galileo
– Problem identified during design and evaluation
– Potential “show stopper” for Galileo mission

 Resets in Hubble Space Telescope after Upgrade in 1996
– Caused by transients from optocouplers
– Occurred when spacecraft flew through South Atlantic anomaly

 Failures of Optocouplers on Topex-Poseidon

 Resets in Power Control Modules on Cassini

 High Multiple-Bit Error Rate in Cassini Solid-State Recorder
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Available Resources at JPL

 Laboratory Facilities and Test Technology
– Cobalt-60 test cell
– Frequent off-site tests at accelerators

 Experienced, Knowledgeable Personnel
– Aware of project needs
– Continual evaluation and modeling of new technologies

 RADATA Data Base

 Reports and Technical Papers
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Key Contacts for Radiation Effects Issues

 Allan Johnston, Acting Group Supervisor
 Leif Scheick
 Gary Swift
 Steve McClure
 Larry Edmonds
 Farokh Irom
 Tetsuo Miyahira
 Bernard Rax
 Steve Guertin
 Jeff Wisdom
 Candice Yui
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Course Outline

 Introduction

 Overview of Radiation Environments

 Recoverable Single-Event Upset Effects

 Non-Recoverable Single-Event Upset Effect

 Total Dose Effects

 Displacement Damage and Special Issues for Optoelectronics

 Summary
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Section II:  Overview of Radiation Environments

Allan H. Johnston
Electronic Parts Engineering Office

Section 514
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Radiation Environments

 Energetic Particles Causing Single-Event Upset
– Galactic cosmic rays
– Cosmic solar particles (heavily influenced by solar flares)
– Trapped protons in radiation belts

 Radiation Causing “Global” Radiation Damage
– Trapped protons in radiation belts
– Trapped electrons in radiation belts
– Protons from solar flares
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Trapped Radiation Belts around Earth

South
Atlantic
Anomaly

Outer Electron Belt

N
Proton Belt
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Energy Distribution in the Earth’s Proton Belt

Altitude at the Equator (thousands of km)
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Trapped Belt Energy Distributions on Jupiter and Earth
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Space Systems at JPL

 Interplanetary Missions
– Jupiter and Saturn

• Intense radiation belts
• Very high radiation levels [> 1 Mrad(Si)]

– Mars Missions
• Orbiters
• Landers

– Asteroids, Comets and Solar Probes

 Earth Orbiting Missions
– Typical radiation levels < 20 krad(Si)

• Depends on altitude and inclination
• Affected by south Atlantic anomaly

– Less margin between specified radiation environment and reality
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Solar Flares

 Solar Cycle Has Eleven-Year Periodicity

 Solar Flares Produce Heavy Ions and Protons
– Heavy ion spectrum is less energetic than galactic cosmic ray

spectrum
– Protons from solar flares are important for earth orbiting and deep

space programs
• Protons from a single flare produce fluences up to ~ 2 x 1010 p/cm2

• Shielding can be effective for lower energies

 Solar Flare Intensity Varies Over a Wide Range
– JPL “design-case” flare usually used for specifications
– Many systems never experience a large flare
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Mechanisms for Global Permanent Damage

 Electrons and Protons Produce Ionization in Semiconductors
– Ionization excites carriers from conduction to valence band
– Charge is trapped at interface regions
– Units:  rad(material)        1 rad = 100 ergs/g of material
– Depends on bias conditions and device technology
– Typical effect:  threshold shift in MOS transistors

 Displacement Damage Also Occurs
– “Collision” between incoming particle and lattice atom
– Lattice atom is moved out of normal position
– Degrades minority carrier lifetime
– Typical effect:  degradation of gain and leakage current in bipolar

transistors
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Mechanisms for Heavy Ion and Proton SEU Effects
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Linear Energy Transfer for Heavy Ions

Integral Cosmic Ray Spectra
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SEE Sensitivity Benchmarks

 Heavy Ion Susceptibility
– Spectrum falls sharply above 30 MeV-cm2/mg
– Effective threshold for concern is much higher, 75 MeV-cm2/mg

• Charge produced by ions depends on total path length
• Increases as 1/(cos θ )

 Proton Susceptibility
– Proton upset is possible for devices with LETth < 15 MeV-cm2/mg

– Proton testing should be done for all devices with thresholds below
that level
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CMOS Technology
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Bulk and Epitaxial Substrates
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Bipolar Technology
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Section III: Recoverable SEU Effects

Gary M. Swift
Electronic Parts Engineering Office

Section 514
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SEE Effects in Operational Spacecraft

 “Safehold” Condition in DS-1 Shortly after Launch

 Multiple-Bit Errors in Cassini Solid-State Recorder

– Occurred even though extensive testing was done during design
phase

– Attributed to system architectural flaw

 Inadvertent Switching of Cassini Power Modules to Standby Mode

– Caused by transients from PM139 comparator
– Low probability because of high input voltage used in design
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Single-Event Upset

 First Observed in Bipolar Flip-Flops in 1979
– Original work treated with skepticism
– SEU has emerged as one of the major issues for application of

microelectronics in space
 Previous JPL Missions Have Struggled with SEU Problems

– Galileo used a 2901 bit-slice microprocessor (bipolar technology)
– Initial testing showed SEU susceptibility, at moderate rate
– Subsequent die design changes increased the SEU rate beyond

the point where the device was useable
– Sandia National Laboratory designed a special rad-hard CMOS

version that was used on the spacecraft
 SEU Effects Have Become Worse as Devices Have Evolved

– Lower “critical charge” because of small device dimensions
– Large numbers of transistors per chip and overall complexity
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Cassini SSR Errors During Solar Flare
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Overview

 How storage elements are upset
– SRAM
– DRAM

 What are “cross-section” and “L.E.T.”

 How space upset rates are calculated

 Upset mitigation techniques

 Other effects
– SEFI
– Transients
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Ion Strike on a p-n Junction
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How  an SRAM Cell Upsets

Ion strike on or
near transistor
will change bit
state
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What is LET?

Measure of energy deposition in a material
- for example: silicon

Linear Energy Transfer

Units are MeV per mg/cm2 (energy per areal density)

Proportional to MeV/µ or pC/µ
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What is Cross Section?

Measure Of Susceptibility

Units = area (cm2 or µ2)

Dart Board Analogy
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Upset Mechanism for DRAMs
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Single-Event Upset in 64-Mb DRAMs
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Upset from Protons

 Proton LET Is Extremely Low
– Proton upset is usually dominated by nuclear reactions
– Secondary reaction products have much higher LET, but have short

ranges compared to galactic cosmic rays
 Proton Testing Provides only Limited Information about SEE

Sensitivity
– “Effective” LET of protons is 3-12 MeV-cm2/mg
– Depends on device construction

 Significance of Proton Upset
– Important because protons can make a large contribution to the

overall upset rate (particularly for low earth orbits)
– Proton testing is cheaper and easier than tests with heavy ions
– In many cases proton test data may be the only available

information
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Proton Recoil Distribution in a Surface Barrier Detector
that Is 50 µm Thick
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How Space Upset Rates Are Calculated

 Measure σ vs. LET
– Testing done at high-energy

accelerator
– Cross-section determined from

circuit response

 Determine Sensitive Volume
– Requires assumptions about

device construction
– Used to determine effect of ions

that strike the device at an angle

 Integrate with LET Spectrum
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Measured Cross Section
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Particle LET Spectrum
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Dependence of Cross Section on Stopping Power
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SEU Rates
 (Interplanetary Space)
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Dependence of PC603e Cross Section on Test Method
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Hamming Codes

“SECDED” = Single Error Correction
                      Double error Detection

- example:  (39, 32) = 32 data bits + 7 parity

“DECTED” = Double Error Correction
                      Triple Error Detection

- example: (79, 64) = 64 data bits + 15 parity

EDAC word error rate is approximately one half of:
              
                                Tscrub      U2

NEDAC
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EDAC Issues

 Error-detection-and-correction
– Used in solid-state recorders on many JPL spacecraft
– Different levels of correction, depending on algorithm

• Single and double bit detection, with single-bit correction
• Double bit detection and correction (larger word size)

 EDAC algorithms can fail at high rates
– Solar flares
– Transitions through radiation belts
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Multiple Bit Upsets in OKI DRAM
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Cassini SSR Architectural Flaw
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Functional Interrupt Effect (“SEFI”)
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Circuit Technologies where SEFI Is Important

 Advanced Memories
– Internal test modes
– Microprogrammed cell architecture

 Flash Memories
– Dominant effect
– “Crashes” internal state controller and buffers

 Xilinx Programmable Logic Arrays

 Microprocessors
– Many categories of responses
– Detection and recovery are very difficult problems
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Non-Recoverable Errors in the 486 Processor
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Cross Section for Transients in the PM139 Comparator
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Calculated Upset Rate for Cassini Power Modules

 Assumed     Aspect  Errors per
Environment      Ratio         Switch-Day

   GCR,   5:1 4.5 x 10-5
solar minimum

   GCR,   5:1 8.2 x 10-6
solar maximum

Design-case 5:1 1.6 x 10-2
solar flare
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SEE Testing

Why so expensive?

Remote, Expensive Facilities (Accelerators)

Test Development

Special Problems
-  Part De-lidding
-  In Vacuum Operation
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Toshiba Angle Plot
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Summary

 SEE Effects Are an Important Issue for All Spacecraft
 Testing and Evaluation of the Impact of SEE Is a Complex

Problem
– Few problems with older spacecraft because of thorough testing
– Likely to become more severe for newer technologies

 Section 514 Continually Evaluates SEE Effects
– Direct Support to Many JPL Programs
– Testing of Advance Microprocessors for REE
– Evaluation of Advanced Devices under the NEPP Program
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Section IV: Nonrecoverable SEU Effects

Leif Z. Scheick
Electronic Parts Engineering Office

Section 514
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Non-Recoverable SEE

 Events which interrupt device function and do not recover
without external interaction

 These events may permanently damage the device

 Three main types
– Latchup (SEL)
– Hard errors (SHE)
– Rupture/Burnout (SEGR/SEB)
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Latchup Is a Common Problem for CMOS Technology

 Latchup paths are inherent in most CMOS circuits because of
the fabrication technology

 The commercial Modem on Pathfinder’s Rover was susceptible
to latchup
– Laboratory tests showed that the latchup was not destructive

• This allowed the device to remain latched for periods of several
minutes

• A simple power cycle counter measure was used in the application
– The latchup probability was low for this application

• Short mission life (nominally two weeks)
• Risk deemed acceptable by mission planners
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SEL Latchup Path
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SEL I-V Characteristics
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SEL Facts

 Triggered by heavy ions, protons, neutrons
 May be catastrophic
 Only recovered by power cycle
 SEL is strongly temperature dependent

– Threshold for latchup decreases at high temperature
– Cross section increases as well

 Modern devices may have many different latchup paths
– Both high current and low current SELs can occur
– Characterization of latchup is a difficult problem for complex circuits
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SEL LET Dependence
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SEL Ion Range Dependence
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SEL Example: Induced by Protons in K-5

 SEL occurred at 0.4 MeV
cm2/mg

– Due to nuclear recoils
– Cross section of 6.7x10-8 cm2

 Many of the latchup events
were destructive
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SEL Heating



62

SEL Heating*
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SEL Heating

Analog circuitry

Output Drivers
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SEL Temperature Dependence
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SEL Temperature Dependence*
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SEL Counter Measures

 SEL Detection and Mitigation

– Current limiting devices can’t stop latchups or low current latchups

– Detection circuits can’t stop all latchups
         Some devices have latchup modes which are always destructive

– Mitigation may not be fast enough

– Thorough testing required to ensure that all latchup events are
detected
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SEL Technology Options

 Device type

– Bulk CMOS latches worst
• COTS

– CMOS deposited on epitaxial layer may improve SEL immunity
• Some COTS - More Expensive
• Not always effective (e.g., K-5 processor)

– SOI and isolated oxides are mostly immune
• Very expensive
• Limited availability
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Single Hard Errors

 Large rare energy depositions can cause individual cells to be
unable to change state

– Referred to as a “stuck bit” in memory
           This is a microdose effect

– Microlatchups can cause a fraction of bits to be unable to change state
          Power cycling is required
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Destructive SEEs

 Gate Rupture (permanent failure of oxide)
– Power devices are most susceptible
– Programmable devices also susceptible
– Very thin oxides in VLSI devices

 Burnout
– Caused by excessive localized current within the structure
– Power transistors
– Some types of linear integrated circuits
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SEB Facts

 Triggered by heavy ions, and possibly by protons and neutrons

 Always destructive

 CMOS, power BJTs and MOSFETs are susceptible

 Mechanism:

– Localized current in body of device

– Roughly analogous to second breakdown in power transistors

– Devices with low doping concentrations are most susceptible
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SEGR Facts

 Triggered by heavy ions

 Always destructive to device

 Dependent on angle of incidence

 Dependent on electric field in gate oxide
– May also occur with zero electric field

– Interplay between pulsed current in drain region and oxide field

 Synergy between TID and SEE

 Power MOSFETs most susceptible
– Some modern programmable devices are also susceptible
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SEGR/SEB Examples

SEGR

 EEPROM
– During writing/erasing

 LAMBDA ASIC

 Power MOSFET
– LET threshold of 25 MeV-

cm2/mg with drain biased at
1/2 rated maximum, and
zero voltage on gate

SEB

 CRUX/APEX
– 2N6796 had a LET

threshold of 15 MeV-
cm2/mg
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Dealing with SEGR and SEB

 Test all device types that are potentially susceptible

 Derate devices well below maximum rated values
– Possible for discrete power devices

– Not appropriate for SEGR or SEB in integrated circuits

 Minimize duty cycle for application of high voltage to susceptible
parts

 Program high voltage device in low radiation environments
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Summary

 Latchup
– Temperature dependent
– Epi devices are generally better
– Prevention circuits not necessarily effective
– Best approach is to avoid using latchup-prone devices

 Gate Rupture and Burnout
– High voltage devices are generally more susceptible
– Derate devices well below maximum operating conditions
– Ensure that all sensitive technologies undergo testing
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Section V:  Total Dose Effects

Dr. John F. Conley, Jr.
Electronic Parts Engineering Office

Section 514
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Space Radiation Effects

1) Single Event Effects (SEE)
-  Hard / Permanent
-  Soft / Recoverable

2) Total Ionizing Dose (TID)
-  Usually dominated by protons
-  Electrons are important for some planetary missions

3) Displacement Damage (DD)
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Galileo Total Dose Problem

Face A

Face B

Face C

Critical Part (DG181)

- All Galileo parts were subjected
to thorough radiation testing

- Failures did not occur until
radiation level was close to
design level

- New programs use less stringent
design methods

U88 (-1X)

Radiation
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X2000/Europa Shielding Analysis

Die
(1.2 Mrad)

10 Mrads

360 mils Al

667 krad

40 mils Al
Spacecraft

Electronics Chassis

1 Grad outside Spacecraft!

Additional 1.7 inches of Al
shielding around the die

provide 30 krad dose which
allows use of 60 krad die

with RDM of 2.0

Choon Lee
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Outline

- Radiation Environment Shielding

- Basic Mechanisms 

- MOS

- Bipolar

- COTS

- Testing

- Warnings and Misconceptions

- Recommendations
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Near Earth TID Environment

- Total accumulated dose depends on orbit altitude, orientation, and time.

South
Atlantic
Anomaly

Outer Electron Belt

N
Proton Belt
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TID Shielding
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- Incremental shielding gives diminished returns
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Total Dose Effects in MOS Devices
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Basic Mechanisms

(1)  Electron-Hole (e-/h+) Pair Generation
- ~17 eV / pair for SiO2

(2)  e-/h+ Pair Recombination / Yield
- Source
- Field

(3)  Electron and Hole Transport
- e- ~ psec
- h+ ~ msec - sec

(4)  Hole Trapping
- Precursor Density
- Cross section

(5)  Interface Trap Formation
- Delayed buildup

DEVICE PARAMETER SHIFT

Poly

Si

(1)

(2)

(3)

(4)
SiO2

E=hνννν

+

-

+

-
+++
+

(5)
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What Is a rad?

# electron-hole pairs (SiO2) ~ 8.1x1012 /cm3 / rad

# pairs =
rad•cm3

100 ergs
1.6x10-19 Jgram erg

10-7 J eV
( )( )()

(electron-hole pair creation energy in SiO2)

SiO2

 • (2.2 g / cm3)

17 +/- 1 eV

Energy Unit Conversion of rad

1 rad = 100 erg / gram

ρ
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Recombination and Yield

1.0

0.8

0.6

0.4

0.2

0
10 2 3 4 5

F R
A

C
TI

O
N

A
L

YI
E

LD

ELECTRIC FIELD (MV/cm)

12-MeV ELECTRONS and Co60

10-keV X-RAYS

2-MeV αααα PARTICLES

700-keV PROTONS

POSITIVE BIAS

5-keV ELECTRONS

- Radiation source and oxide field dependent
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Total Dose Defects in MOS Devices
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Influence of Hole Traps and Interface Traps
 on CV and IV Curves
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Influence of Interface and Oxide Trapped Charge
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Effects of Bias
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Dynamic vs. Static Bias∆Vfb vs. Gate Voltage

- Bias has a strong influence on the radiation response
- Powering down a device can sometimes improve radiation response
- A powered device is not always worst case
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Annealing

OXIDE

GATE

SILICON EC

EV

1)  Tunnel Annealing
- Spatial Dependence
- Log time dependence

2)  Thermal Annealing
- Energy Dependence
- Temp. Dependence

1) Electron Tunneling

2) Electron Thermal Emission

Traps
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Dose Rate Effects
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- Hole traps and interface traps build-up and anneal on different time scales.
- Irradiation at different dose rates can produce different failure mechanisms and

total dose hardness.
- When time is considered, dose rate effects in CMOS disappear.
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Oxide Thickness
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Trapping drops off steeply in thin oxides but there are still problems:
1) Radiation Induced Leakage Currents (RILC) in ultrathin oxides
2)Thick oxides: i. Power MOSFETs

ii. Field oxides
iii. Silicon-on-insulator (SOI) buried oxides
vi. Bipolar devices.

Interface Traps
Hole Traps
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Radiation Induced Leakage Current (RILC)

- Reported in thin oxides (<10 nm) at high doses (>1Mrad).

- Similar to stress induced leakage current (SILC).

- Thought to be due to trap assisted tunneling.

- Possible failure mechanism for flash memories.
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Field Oxide Leakage
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- Field oxides thick and poorly controlled.
- Dominant failure mechanism for
      commercial processes.
- Geometry is critical.
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Silicon-on-Insulator (SOI)
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Flash Memories
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Linear BJT
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Structure of a bipolar transistor
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Bipolar Transistor: Gain Degradation

EXTRINSIC BASE

BASE

COLLECTOR

COLLECTOR-BASE
DEPLETION REGION

INVERSION REGION
AFTER IRRADIATION

OXIDE

EMITTER-
BASE
DEPLETION
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- Charge trapped at and near the interface above the base region can degrade gain
and increase leakage.

x  x  x  x  x  x  x  x  x  x  x
+   +   +   +   +   +   +   +   +   +  +   +   +   +   +
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Gain Degradation of Two Transistor Types Used on
Cassini
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Extremely Low Dose Rate Sensitivity (ELDRS)
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- Some bipolar device show extreme degradation at low dose rates.
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ELDRS: Effect of Dose Rate on Ib
for LM111 Comparator
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ELDRS
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ELDRS Degradation Model - Space Charge Effects
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ELDRS in Space: LM124 Op-Amp
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Testing
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COTS Variability: OP27 Op-Amp
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COTS:  Same Part, Different Failure Mechanism
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COTS / ELDRS Part Variation: Same Manufacturer
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COTS / ELDRs: Manufacturer Variation
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Warning:  Space Qualified Isn’t Always
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Warnings / Common Misperceptions

- No bias does not mean that no damage will occur
      - Linear IC’s can exhibit more damage when unbiased
      - Discrete transistor damage is about a factor of two lower when unbiased
      - CMOS bias effects are very complex
   Generally some improvement when parts are unbiased

 Needs to be checked on part-by-part basis

- Radiation data is not “generic”
      - Do not assume that data from one manufacturer applies to same part type 
         from another manufacturer
      - Radiation response may change as manufacturing process evolves

- Characterization data must encompass use conditions
      - Example: linear IC data with +/- 15V power supplies cannot be used for 5/0 V
         applications
      - Total dose data bases are of limited value
      - Be aware of ELDRS
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Recommendations

1. Get Radiation Testing office involved early

2. Consider using a part where radiation data already exists

3. When radiation testing is done, prepare course of action for parts that fail 
- Shielding
- Redesign
- Scheduling delay/cost factors

4. Lot acceptance testing is generally recommended (except for missions 
    with very low levels)

5. Use extreme care when archival data is used
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Conclusions

Total dose effects have not been a major factor in older missions
     - Thorough radiation testing and parts control
     - Conservative design specifications

Total dose effects will be more important for new systems
     - Minimal radiation testing and parts control
     - Less conservative design specifications
     - New effects (particularly ELDRs)
     - Subtle failure modes in complex parts

Sensitive Technologies
- Technologies with internal charge pumps (e.g., flash memories)
- High-precision linear integrated circuits
- Field oxide failures in advanced CMOS

Most Total dose problems are avoidable or preventable
- Total dose must be a design criteria
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Typical Total Dose Failure Levels of Various
Technologies

Technology Failure Level [Krad(Si)]

Linear IC’s  2 - 50

Mixed-signal IC’s  2 - 30

Flash Memories  5 - 15

DRAMs 15 - 50

Microprocessors 15 - 70
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Further Reading

1.  Ma, T.P., and P.V. Dressendorfer, Ionizing Radiation Effects in MOS Devices and Circuits, (Wiley and
        Sons, New York, 1989).
2.  P.V. Dressendorfer, “Basic Mechanisms for the New Millenium,” in 1998 IEEE NSREC Short Course,
        (IEEE, Piscataway, NJ, 1998).
3.  All IEEE Nuclear and Space Radiation Effects Conference (NSREC) Proceedings  (see December
        issues of IEEE Transactions on Nuclear Science, 1964-present).
4.  All IEEE NSREC Radiation Effects Data Workshops (199x-present).
5.  All IEEE NSREC Radiation Effects Short Courses (1980-present).
6.  J. Bennedetto, “Economy-Class Ion-Defying ICs in Orbit,” IEEE SPECTRUM, March 1998, p. 36-41.
7.  T. Oldham, Ionizing Radiation Effects in MOS Oxides, (World Scientific, River Edge, NJ, 1999).



117

Section VI:  Displacement Damage and Special
Issues for Optoelectronics

Allan H. Johnston
Electronic Parts Engineering Office

Section 514
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Displacement Damage for High Energy Transfer

 Displacement Cascade

 Several damage clusters
are produced by the
collision

 Damage is caused by
movement of lattice atom
after primary collision
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Displacement Damage

 Effects of Displacement Damage in Semiconductors
– Minority carrier lifetime is degraded

• Reduces gain of bipolar transistors
• Also affects optical detectors and some types of light-emitting diodes
• Effects become important for proton fluences above 1 x 1010 p/cm2

– Mobility and carrier concentration are also affected

 Particles Producing Displacement Damage
– Protons (all energies)
– Electrons with energies above 150 keV
– Neutrons (from on-board power sources)



120

Energy Dependence of Displacement Damage in Silicon
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Displacement Damage in a Voltage Regulator
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Displacement Damage Comparisons

 Total  Equiv. Neutron
Particle            Dose  Fluence  Fluence
Type [rad(Si)]  (#/cm2) (n/cm2)

electrons   100k 3.3 x 1012 3.8 x 1011
(100 MeV)

electrons   100k 4.1 x 1012 8.6 x 1010
(2 MeV)

protons            100k 6.2 x 1011 1.4 x 1012
(50 MeV)
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Degradation of Light-Emitting Diodes
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    LED
(Surface emitting)

Phototransistor
Phototransistor

Silicone coupling
compound

  LED
(emits from
side and top)

Sandwich structure
(direct coupling to detector)

(a) Lateral structure
(reduced coupling efficiency)

(b)

Optocoupler Construction
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Optocoupler Degradation
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Failure of Optocouplers on Topex-Poseidon

 High-Inclination Earth Orbit
– 1300 km, 98 degrees
– Goes through lower edge of proton radiation belts

 Optocouplers Used in Five Different Circuit Applications
– Failure occurred in thruster status application after 2.7 years

• Design did not consider displacement damage
• Circuit failure corresponds to a factor of four reduction in current-

transfer ratio
• Cold “spares” of little value for displacement damage

– Optocouplers continue to work satisfactorily in thruster firing circuit
• Consequence of higher circuit margin used by designers
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63 MeV Protons

3.9

3.8

3.7

3.6

3.5

3.4

3.3
1 x 1010 1 x 1011

O
ut

pu
t V

ol
ta

ge
 (V

)

Proton Fluence (p/cm2)

10%
LOAD 25%

LOAD

50%
LOAD

75%
LOAD

Failure of Power Converters Due to Optocoupler Degradation



131

Ceramic
GaAsP Light-
Emitting Diodes
(under ceramic)

Silicon
Detector/Amplifier

Optocoupler Transients

Voltage System Shutdown Occurred
on Hubble Space Telescope

– Observed after upgraded electronics
were installed

– Strongly correlated with orbit pattern

Laboratory Tests Showed that
Shutdown Was Caused by
Transients from Protons

– Dominated by charge in
photodetector

– Heavy ions also produce transients
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Example of Transients from Protons for 6N134
Optocoupler
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Angular Dependence of  Proton Upset Cross Section
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Course Summary
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Environments and System Requirements

 JPL Systems Have a Variety of Mission Requirements
– Short duration missions with low radiation levels
– Interplanetary missions with extremely high levels
– Earth-orbiting missions where proton effects dominate

 Overall Mission Requirements Must Be Understood
– “Reflexive” policies and procedures should be avoided
– Testing is not always required

 Using Parts Where Radiation Data Exists Can Be Cost Effective
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Single-Event Upset

 SEE Effects Have Become Worse As Parts Have Evolved
– Device scaling
– Complex internal design and architecture
– Functional interrupt problems

 SEE Testing Has Become More Complex
– Device complexity
– New phenomena
– Multiple-bit upset

 Successful Use of Commercial Parts Depends on System
Design
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Permanent Damage from Single-Particles

 Latchup Is the Most Critical Catastrophic Damage Issue
– Many CMOS circuits are sensitive to latchup
– Difficult and costly to characterize latchup in detail
– Best alternative is to eliminate latchup-prone devices

 Gate Rupture and Burnout Effects Are Becoming More
Important
– Previously only an issue for power MOSFETs
– Permanent damage has been observed in pulse-width modulators
– Testing and qualification methods need to consider these effects
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Total Dose Effects

 Total Dose Damage Remains a Key Issue for Many Technologies
– Field oxide failure causes huge increases and functional failure in

CMOS
– Gate oxide threshold shift is important in many technologies
– Internal charge pumps are usually highly susceptible to total dose

damage

 Low Dose Rate Damage Effects Are a Major Issue for Bipolar Devices
– Problem not completely understood
– Wide variation among manufacturers
– JPL has an excellent facility for tests at very low dose rate

 Devices with High Maximum Voltage Ratings Are Often a Problem
– Low doping levels
– Increased oxide thickness
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Permanent Damage from Protons and Electrons

 Permanent Damage Issues Are Often Overlooked

 Technologies Where Displacement Effects Matter
– Linear integrated circuits
– Light emitting diodes
– Optical detectors
– Optocouplers

 Cobalt-60 Gamma Rays Are a Compromise
– Cost effective
– Appropriate for technologies where displacement damage doesn’t

matter
– Provides no information about displacement damage effects


